If it's not what You are looking for type in the equation solver your own equation and let us solve it.
a^2-10a-17=0
a = 1; b = -10; c = -17;
Δ = b2-4ac
Δ = -102-4·1·(-17)
Δ = 168
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{168}=\sqrt{4*42}=\sqrt{4}*\sqrt{42}=2\sqrt{42}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-2\sqrt{42}}{2*1}=\frac{10-2\sqrt{42}}{2} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+2\sqrt{42}}{2*1}=\frac{10+2\sqrt{42}}{2} $
| -3w=51 | | 5x+7+x-9x=- | | 7y(2y-4)=24 | | 3(a+7)=−33 | | 5(b-1)-3b=7b-5(1+b) | | 12m+8m=80 | | -2(x+3)+4x=6x+10 | | x0.02+x0.11=(3)0.08 | | 3k^2+19k+20=0 | | 5(b-1)=7b-5(1+b) | | 5a+6=a-18 | | |x+8|=C | | 175m-125m+43425=45450-175m | | p-4=-9=p | | 9+6=x-10 | | -2(x+3)+4x=6x+10−2(x+3)+4x=6x+10 | | 2x+3/4(4x+16=7 | | 2x+10-2=-2 | | 2x+4+6x=5x+22 | | -y=-39 | | 4(x-2)-22=-14 | | 3+3x-(x-2)=3x+5 | | 2x+5x-15=13 | | (5/6x+2/3)=-9 | | 4x-146=-8x+94 | | 3/4-y/4=7 | | ((x+4)/2)=((1/3)+(x-1)/2) | | -4+10n=-56 | | x/3=-25 | | -3x-8(x-4)=54 | | 8g+2g–11=9 | | 22+3=4.75x |